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SUMMAPRY

The use of tha averaged periodogram of a discrete, random function in estimating the direct
{i.e., from a single rondom function) and cross power spectral density functions is described.
Application of the algorithm known as the "fast Fourier transform" is suggested us the method
of calculating Fourier coefficients and details of the numerical techniques involved in its
derivation and use are given. The advisabiiity of modifying the Fourier coefficients before
converting to periodograms and averaging is pointed out and details of a suitable modif; ing
function, expressed in both the time and frequency domains, are given. The method of con-
verting the periodogram to power spectral density such that the integral of the latter functi .~
equals the mean square of the random function is derived, showing the requirement for on
empirically determined factor. Finally, a digitul filter is specified which is suitable for use
in a filtering and decimation process thot is applied to the calcu'ation of power spectral
density with a varying frequency resolution over the total frequency range of interest.
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iNTRODUCTION

The technique of power spectral density anclysis has received considerabie attention
in recent years becouse of its suitability ir the aralysis of stationcry random functions.
A rendom process in time is stationary when its stciistical properties obtained ot o
fixed time from an ensemble of sample funciicns are independent of time. It is
generally sufficient for purposes of spectral density aralysis for only the first two
stctistical moments to be indeperdent of time, in which case the process is said to be
weakly stationary. For a Gaussian process, of course, the independence of time of
the first two statistical moments implies strong stationarity. If, further, the statistical
procerties of each sample record are dependent only on time differences and not on
absolute time the process is ergodic and the properties of the process may be detemined
from one somple record.

Random or stochastic, processes occur in many branches of engireering including
communications, vibrations, acoustics, turbulent fluid flow ard also in vorious ospects
of bio-dynumics, oceanogrephy, metecrology and seismology; however, the majority
of random functions derived from physical processes are rarely more than approximately
stationary and ergodic and can be treated as exactly so for only lin.ited periods of
ime.

Among uses of the power spectrai density function are the investigation of physical
mechanisms underlying rondom processes, the resporse of linecr dynamic systems to
random excitations, study cf radio propagation phenomena and the simulation of
random time series. The join’ properties of pairs of random functions are also important
ond give rise to cross power spectral density analysis. The prefix "direct” is given

here to the power spectral density function derived from a <ingle random function where
it is necessary to distinguish it from the cross pow .r spectral density of two random
functiens.

The most usual and convenient method of expressing the power spectral density function
of a random function of time is in terms of the Fourier transformation of the autocorrela-
tion function. This definition has the advantage of not being troubled mathematicclly
by difficulties and restrictions because of integral convergence properties, and leads

to an efficient method of computing estimates of the spectral density function. Full
details may be obtained from Reference 1. In the case of the cross power spectral
density function the cross correlation function replaces the autocorrelation function.
An alternative method of defining the power spectral density function is in terms of

the square of the Fourier integral of the time function (or, in the case of cross power
spectral density, the product of the Fourier integral of the first random function ond

the complex conjugate of the Fourier integral of the second). For the case of a

random function defired for all time, the existence of its Fourier integral requires

that restrictions ore piaced on the rorm of the time function; however, for the

finite time for which the output of a real stochastic process is available and from which the
power spectral density must be estimated the Fourier integral restrictions are satisfied
and the Fourier transform may be used in the estimation process. The development of
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improved numerical techniques in evaluating the discrete form of the Fourier trans-
form has made the use of Fourier methods practicable and this report outlines the
applicotion of these techniques to the ecoriomical estimation of direct and cross
power spectral density functions.

Because of the finite amount of data available from a real random process the problem
of estimating its spectrul density is essentially a statistical problem of estimation based
on a sample drawn from ¢ large pepulation, with the inherent errors associated with
this technique. A further source of error in the estimation process, also due to the
finite data sample, is introduced through the Fourier transformation process and is
equivalent to viewing the frequency domain through a fiiter with non-zero band-
width, resulting in a distorted spectral function. In the design of a power spectral
density estimation procedure the major considerations are the minimizing of these
errors consistent with economy of computational effort or within the confines of the
limited amount of data available. These points are discussed further in subsequent
sections of this report.
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2.0

2.1

POWER SPECTRAL DENSITY CALCULATION BY DIiRECT FOURIER
TRANSFORMATION

The Modified Periodogram

T..e starting point in calculating power spectral density of discrete random data by the
direct method is the periodogram defined as

12
(k) = |A(K)] (2.1)
where
N-1
1 . - kj
A = 5 20 X() exp (- 2ni A 2.2)
j=0
k=0,1,2, ..., N1

VT

and X(j) is the time function defined at N points in time, At apart. A(k) is the
discrete Fourier transform of the time function ond is equivalent to a harmonic
analysis of X assuming a period of 1/(N At) since

N-1
X() = 25 AW exp (20 3 2.3)
k=0

§=0,1,2,..., N-1

The above definition of the Fourier transform of X(j) is equivalent to multi; " ying the
infinite time function, of which X(j) is a sample, by a finite Dirac comb which has the
value 1 at points on the time cxis given by j At and is zero elsewhere. Multiplica-
tion of two functions in the time domain is equivalent to convolving them in the
frequency domain and thus

[o0]

Alf)) = f H(fi - ) A_(P) df (2.4)

-Q

where Am(f) is the Fourier transform of the infinite time fuinction and H(f) is the

Fourier transform of tre Dirac comb. This effect may be regarded as viewing A(f} )
through a "window" whose transmissibility is represented by H(f); the name spectral
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2.2

window has been g'ven in Reference 1 to |H(f')|2 and H(f) iz known as a kerne! (of
the integral given in (2.3)) or frequency window. The spectral window is analogous
to the frequency response of an electrical filter and the same criteria concerning
desirable churacteristics apply. Equation (2.4) shows that the calculated value of
A(f) at frequency f| is affected by the value of A(f) at all other frequencies f,
resulting in o lcck of definition of the true value of A(f) and thence in the true value
of spectr:l density. The degree of lack of resolution is dependent on the form of
H(f), and may be minimized by a choice of H(f} - f) which has its largest value at fi

and decreases rapidly as lfk - f l increases.
The spectral window corresponding to the Dirac comb function described above is

sinnf?m

JD(f) = Tm—ﬁ'?—— (2.5)
m

where T.,=N At, and the graphical representation of JD(f) is shown in Figure 1.

The characteristics of this window are observed to be far from desirable and mar:y
better windows hcve been proposed. Section 4 gives the details of a suggested
window which may be applied in either time or speztral domain. A periodogram
obtained from data to which a window cther than the Dirac comb has been applied is
known as a modified periodogram.

The process of modifying a periodogram is obviously identical to the attempt to
eliminate the Gibbs Phenomencn, using the Fejer or Lanczos methods, when approxi-
mating an expansion of a periodic function with discontinuous derivatives by a
truncated Fourier series. Details of these techniques are given in Reference 2.

From Periodogram to Spectral Density

It is well known that the modified periodogram is not a good estimate of the power
spectral density of a stationary, random function of time, the reason being that
while the mean periodogram for large N tends to the spectral density the variance of
I(k) about the true value of spectral density does not decrease to zero as N — o,
that is, the spectral density estimator I(k) is not consistent .

In Reference 3, however, it is shown how it is possible to obtain spectral estimates
from the periodogram. The method is to divide the N values of X(j) into p sections
each of length m, sum the I(k) for each k and divide by p, i.e.,

(k) =

P

1

_Z; k) 2.6
5 II,() (2.6)

r:

where now k = 0,1,2, ..., m~ 1 and the total number of values of X(j) which have
been used is mp. Thz i (k) are obtained using m instead of N in Equation (2.2).

4



In converting an averaged, modified pericdogram to power spectrai density several
conversion factors must be applied. To derive these the useful relation between the
data in the time domain and the Fourier coeificients known as Parseval's equation may
be employed. This is

m-1 m- 1
LY %20 = 2 @+ (2.7)
k=0

j=0

which expresses the mean square of the time function os the sum of the Fourier
coefficients squared; the relationship is easily proved from the definition of a(k)

and b(k). The integral of the power spectral density function with respect to fre-
quency must also equal the mean square of X(j) so the pericdogram must be divided

by the frequency interval. The coefficients a(k) and b(k) are symmetrical obout

k = m/2 (see Section 5.2), and the power spectral density is defined only for m/2 + 1
frequencies, requiring o factor of 2 to be applied to the periodogram for the restricted
range of k. The application of a spectral window is equivalent to weighting the X\j)
with weights W(j), and the weighted mean square is

E Xowaeo o w2
i _ S E GO0 (2.8)
Y Wi > WA k=0

j=0 j=0

where a'(k) and b'(k) represent the modified Fourier coefficients. For the spectral

window defined in Section 4.0 the value of 1/m Z Wz(j) is 3/8.

It is desirable, however, that the integral of the power spectral density be equal to

the unweighted mean square of X(j), which requires a further muitiplying factor to be
used in Equation (2.8). This factor .ias been determined empirically for the spectral
window of Section 4.1, to a good approximation, as 6.0. Obviously this value
depends on the form of W(j) and will change for other spectral windows. Combining
these conversion factors, and noting that Af the frequency interval between coefficients
is 1/(m At) (or h/m, where h is the data sampling rate) the power spectral density is
given by

P9 = 222 T (2.9)

assuming the use of the data window described in Section 4.0, ond where

k=0,1,2, ..., m/2.



2.3

Numerical Techniques

The evaluation of A(k) from Equation (2.2) is facilitated by the use of a computational
method which expands the single transform of size N into a multi-dimensional trans-
form of dimensions which are factors of N. The most effective use of this method has
seen found to arise when N is chosen as an integral power of 2. Detc’!s of this
computational technique, known as the "fast Fourier transform," are given in Refei-
ence 4 and a particuler implementation is discussed further in Section 7 of this report.

Equation (2.2) applies equally to rea! and complex values of X(j), but since the time

series is always real the linearity property of Fourier transforms may be used to calculate
a pair of I (k) resuits simultaneously, as follows. For the p sets of data form

Z(3) = Xgq(Q) +1i Xos(j) (2.10)
where

i=0,1,2,...,m=1

It

1,2,3,...,p
and s =1,2,3, ..., p/2 assuming p is even.

If p is odd, there remains one set of data to be treated singly in Equation (2.2) with
zero imaginary part. Substituting Z.(j) in Equation (2.2) in place of X{j) the discrete

Fourier transform B((k) is obtained, and from this

Ay = 77 {8k - 7 (m- k) (2-11b)
Defining
Afk) = a (i) +i b (K (2.12)
and
By(k) = uy(k) + i v(k) (2.13)
then
_1
a1 (9 = 5 {u,l) + ugfm= 0} (2.14)



byg-1(K) = 5 {v (k) = v(m- W} (2.19)
ors(k) =% {vig +vm - 10} (2.16)
b, (k) = % {- 519 + u (m - k)} (2.17)

where k=0,1,2, ..., m/2.

The spectral window, details of which are given in Section 4, is then applied to the
a and b coefficients by summing products of triplets of coefficients and the weights

-1/4,1/2,-1/4, i.e.,

5 0,k - % afk + 1) (2.18)

vy ) ‘

cr(k) -7 afk-1)+

and similarly for the b'r(k) . Atk=0, or'(O) is given by the weighted sum of or(O) and
Gr(l) with weights 1/2, - 1/2 and at k = m/2 the last two values of a (k) are summed

with simiiar weights; b'r(O) and b'r(m/2) are obtained in the saome manner .

For economy of computation time it is advantageous in calculating lr(k) to take out

the common factors 1/2 in Equations (2.14) to (2.17) and (2.18), and also to take
out the factor 1/m in Equation (2.2) and calculate the coefficients in the from
4 m ay(k). From Equations (2.6) and (2.9) the final expression in computing the

power spectral density is then

P
P = o Z] {(4ma? +(@m b7} (2.19)

after substitutingp = N/m.

A computer program which uses the abeve equations to calculate power spectral
density functions of stationary, discrete, random data is described in Reference 5.
Also included in Reference 5 is the description of a computer program which uses the
equations of Section 3 to calculate the direct power spectral density of each of two
discrete, random functions and the cross power spectral density between them. The
result of an example calculation of power spectral density using the equations given
above is shown in Figure 9 and, for comparison, the psd for the same data obtained
using conventional analog equipment is shown in Figure 10.

7
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3.2

CROSS POWER SPECTRAL DENSITY CALCULATION BY DIRECT FOURIER
TRANSFORMATION

The Modified Cross Periodogram and Cross Spectral Density

For the case of cross power spectral density hetween time varying signals X(j) and
Y(j), defined at increments of time At, the cross periodogram may be defined as

Ixy(k) = A(k) C*(k) (3.1

where A(k) is defined by Equation (2.2) and

N-1
o0 =ﬁ jz(:) Y(j) exp ( 2 'Tk\T) (3.2)

* means complex conjugate.

The remcrks concerning dota and spectral windows given in Section 2.1 apply equally
to the cross periodogram, which needs to be m dified in the same manner as the
periodogram for a single function of time.

Statistical stability is obtained as before by averaging over ¢ series of cross periodograms

calculated “rom adjacent sets of time data, ecch of length m At. That is,

p
Z Ly (k) (3.3)

1
p
where k=0,1,2, ..., m-1,

Numerical Techniques

A(k) and C(k) can be evaluated using the FFT technique as mentioned in Section 2.3.
Sets of X(j) and Y(j) may be transformed simultaneously by treating the n as the real
and imaginary paits of complex data. Let

Z,(j) = X,(3) + 1Y) (3.4)

where j=0,1,2, ..., m=1andr=1,2,3, ..., o. Substitute Z (j) for X(j) 'n
Equation (2.2) to give the discrete Fourier transform B(k). Let A{) and B (k) have
real and imaginary parts as defined in Equations (2.10) and (2.11) and let

Ck) = cr(k) +i d (k) (3.5)



B .

then
0 (k) = -;- {ur(k) +y (m - k)} (3.6)
b, =3 {(k) = v (m - 9} (3.7)
¢ (k) =% {vr(k) Fv (- k)} (3.8)
d(k)=-‘-{-u(k)+u(m-k)} (3.9)
r 2 r r *

A spectral window is then applied to the above coefficients by summing wei~hted
triplets as described in Equation (2.18). It is apparent that the power spectral

densities of the functions X(j) and Y(j) are also readily available from the above
coefficients. Denoting these spectral densities by P (k) and P_(k), respectively,

and calculating the coefficients with the same multipliers as uzed in Equation (2.79)
gives

p
P (k) = hz—N rZ_:_] {(4m ol ()" + (4m b'r(k))z} (3.10)
pk)=-—2—}p: am (W) + (4mbL() } 3.11
S th=]{(mc,<» - (4mbs (K) (3.11)
) P
MCRS=T rz;] 16 m? {q'r(k) e (k) + b () . (K)
+i (by(K) c1(K) = oy(k) d (k) (3.12)

The cross power spectrai dansity is seen to be a complex function in contrast to the
direct spectral densities which are real. Also, writing

ny(k) = D(k) - i Q(k) (3.13)
then it is easily shown thot
Pyx(k) = D(k) + i Q(k) (3.14)

9



4.0

A SPECTRAL WINDOW

The need for weighting the time data, or alternatively smoothing the periodogram,
has been pointed out in Section 2.1. The weighting function in the time domain has
been named a date window and the square of its Fourier transform is called a spectral
window .

A window which embodies reasonably satisfactory characteristics is one based on the
Hanning lag window; the latier is commonly advocated when calculating power spectral
density by the indirect method using auto- or cross-correlation functio's and is defined
in the correlation, or time lag, domain. Details of the Hanning lag window, and the

general class of windows from which it derives, are given in Reference !.

The data window proposed here is

W(f)=-]2-(|-cos—2.|.lt-) 0<t<T
m

(4.1)
W(t) =0 T <t<0
m

where T, = NAt. Figure 2 shows a curve of W(i) as a function of time; it is seen
that the effect of weighting a time function with this window is to reduce the ampli-

tude of the data samples neart =0 and t = T_ relative to the center of the range, and

to remove the discontinuities in the derivatives at each end of the data sampie.

The frequency window, defined as the Fourier transform of W(t), is required for con-
volving with the Fourier coefficients obtained from Equations (2.12) to (2.15) and
(3.6) to (3.9). Thus,

[6 o)
H(f) = [wu) ICLELL (4.2)

-

Substituting for W(t) and integrating gives

1 ] 1 1 1
Y = e - —] - — - —
H(f 5 QO(F) ) Qg (f + T ) 7 Q0 (f T ) (4.3)
m m
where
sin2nf T, sinfafT
Qo(f) - 2 f T nf (4.4)

10



Substituting for Qq(f), Qqo(f +1/T,) and Qy (f - 1/T,,) in Equation (4.3) and
rearranging

T sin? mfT sin2wfT I
_m ] m . m
H(”"z( TZ){Zﬂme TR, (4.9

and the spectral window is given by

1 2 :
J(A) = 5~ HO| (4.6)
m
Thus,
. 2
o = T sinm f T ’ 4.7
VT .
-7y | v T

This is similar to the Ba +lett spectral window described in References 1 and 3, but

with the factor (2 (1 - £2 Tfn))-2 included here.

Where f T, = + 1 Equation (4.7) may be expanded to find the value of J (l 1 /Tml)
as

T sinnme 12
O =7 )sa-ry T T, (“.8)
That is, when f T = %1
I
! ="
"( T )" 16 (4.9)
m

The vaiiation of J(f)/ T with f T, normalized to the valve 1 at f T =0, is shown

in Figure 3. For comparison the Hanning spectral window is reproduced in Figure 4.
The window may be applied in ihe time domain by multiplying X(t) by W(t), or in the

frequency domain by forming the convolution of A(f) and H(f), where A(f) is the Fourier
transform of X(t). In the frequency domain the convolution function is

R



Herever, in calculating A1) from discicte daia, ¢ 20 1 {4.10) mu_, ba wittien .
@
} ]
A'llg =~ 2 F(g) Alk = 1 {(4.01,
?=-

where £ is ncw restricted to integer values. Defining &'(k) in terms of re .l on !
imaginary parts as in Equation (2.10) then

o8]
o (k) :_;_ E a(k-ll)‘ sin 2nf % sin 2w (7 + 1) _% sin 277 (i’_—__'-__)_.}
g | 2u¢ 2n (L + 1) 2n(f =T
(s o) R 2 "
I SN TY UL KGR ML LS
2 1 2= l d 2 n({ + 1) 2 wig - ")

{4.12)

In the first summation on the right hand side of Equation (4.12) uny value of { other
than 0 or + 1 makes ali the trigonometric terms cero, and in the sc:ond summation
the trigonometric terms are all zero for all £. Thus,

ﬂMJ-%aﬂ-D+%MH-%c&+D (4.13)

and similarly for the imaginary part of A'(k), leading to

HH=-%b&-n+%MM~%b&*U (4.12)

giving the smoothing weights sed in Sections 2.3 and 3.2, When k =0 the
coefficients are given by

ﬂm=%dm-%dh (4.15)
and when k =m/2
] . 1 m \ o
' = = -/ o — —_— . g
a'(m/2) 5 @ (m/2) 2 0(2 ],' (.16

since the transform is symmciriv.al cbout k = 0 and m,/% .

12



[T

h
<O

5.2

ANALYSIS BANDWIDTH, FREQUENCY IMTERVAL AND STATISTICAL STABILITY

Anclysis Bondwidth

The bandwidth of the spectral window is analogous to the bandwidth of the filter used
in the anclog method of calculating power spectre! densify. It may be defined as the
inte:val between the frecuencies ot which the spectral windo~ has fallen to one half
its moximum value. Equating ihe right hand side of Equation (4.7) to half its maximum
velue, T, 8, the anclysis bandwidth is given by twice the vclue of f satisfying the

resulting equation. The equation is

~

sinn fT_\°
m 1 .2 7.2
R - _ T
( — ) 2 (1-i2Th) (5.1)

m

and the bandwidth is given by

I
BW = i - (5.2)

m

where f' is a solution of Equation (3.1} with 7 T os the variable. The approximate
velue of f' is 0.73 and for discrete datc Tm =m At =m, h where h is the data

sampiing rate. Thus, the bondwidth is given by

Ll

BW = 1.46 - (5.3)

which is approximately 3h/2m, and may be compared with the analysis bandwidth

of h/m for the Hanring spectral window applied to power spectic! density calculated
by the method of Fourier transforming the correlation function of the time signal(s) .

Ii should be noted, however, that m lags specified for the calculation of the correla-
tion function ic equivalent to 2m points used in calculating the periodogram since the
correlation function is obtained for m positive and m negative lags, giving 2m values
of the correlation function; in the case of autocorrelation the evenness of the function
requires only m explicit values to be calculated. The difference in bandwidth foi the
twe spectral windews is clearly shown in Figures 3 and 4.

Frequency Interval

The finite Forrier transform defined in Equation (2.2) produces m pairs of coefficients
for m values of the time function. The Fourier coefficients are spaced at frequency
intervals of h/m cycles/recond giving a total frequency rarge of h cycles/second.
However, it is known from information theory (Reference 7, for instance) that the
highest recognizable fraquency in a discrete signal sampled h times per second is

13
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h.'2 cycles second. Further, it can pe shown that a discrete Fourier traasform of a

set of real dato yields complex results, the real part >f which is symmetricol about the
m, 2th point and the imaginary part of which is antisymmetrical about the mid-point.
In Reference 8 the Fourier coefficients are said to be "aliased" about the h/2 point of
the frequency scale. The coefficients for frequencies from h/2 to h may ke con-
sidered as the coefficients of frequencies in the range 0 to ~h,2; thus, only m/2 + 1
values of power spectral density ore obtained for positive frequencies and, as pointed
out in Section 2, the power spectral density must be multiplied by 2 to permit the
totai power ‘o be distributed over positive fraquencies only.

Sratistical Stability

The statistical stability of each estimate of power spectral density can be expressed
by the veriance of the estimate. In crder to determine the variance in general terms
it is usually necessary to assume that the time function concerned is a sample from a
Gaussian process and that the true power spectral density is relatively flat for fre-
quency increments equal to the "equivalent width" of the spectral window (see
Reference 1, page 19). The varionce of each estimate may then be derived, using
the covariance function of adjacent power spectral density estimates and the
properties of the .pectral window, and expressed in terms of the coefficient of
variation (standard deviation/mean) .

For a chi-square distribution, which s a distribution of positive terms derived from
a Gaussian distribution, it is known that the coefficient of variation equals (2/K)’ 2
where K is the number of degrees of freedom of the chi-square distribution. By
analogy, it is possible to express the stability .t the power spectrc! density function
in terms of the number of degrees of freedom of a chi-square distribution with the
sama coefficient of variation. These are generally known as "equivalent degrees of
freedom" of the spectral density function. For the method of calculating power
spectral density described in Sections 2 and 3 the variance of the spectral estimates
is shown in Reference 3 to be given approximately by

P2(k)

Variance of P(k) = (5.4)

a)
where P(k) is the true power spectral density corresponding to the calculated value
P(k), and p = N/m. The expected, or cverage, value of Pz(k) is

E {P0} = P2k (5.5
and thus

Variance of P(k)

> (5.6)
E {P(k)}

= (Coefficient of Variation)? =

O |-

14



and, using the relotionship between coefficient of variation and K for a chi-square
distribution, the equivalent degrees of freedom are given by

epr = 2N (5.7)

m

This applies sirictly only to Gaussian signals without sharp peaks in the spectrum; but
although few recl signals are exactly Gaussian ¢ large number cf natural random pro-
cesses approximate to Gaussian distributions due to central limit effects and EDF is
thus o useful and meaningful expression of the statistical stability of the power spectral
density. It is shown in Reference 1, page 24 that in the vicinity of sharp peaks the
equivalent degrees of freedom become equcl to 2.

15
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6.0

6.1

6.2

DATA FILTERING AND DECIMATION

Object of the Filtering and Decimation

In the previous section it is seen that the frequency interval and anclysis bandwidth
are functic.as of the data samoling rate h and the number of tronsform points m. For
¢ fixed value of h the bandwidth is proportional to 1,'m, and thus the narrower the
bandwidth the larger the value of m; but from Section 7 it will be observed that m
must be an integral power of 2 to use the FFT implementation specified there, +hich
means that as the required m gets iarger availabie vaiuves become more restricted. A
more important point is that the time required to compute the power spectrc! density
is proporticnai to m. It is desirable, therefore, to choose m as small as possible
consistent ‘vith the requirement that the bandwidth permits adequate detoil to be
shown in th2 power spectral density results.

The power spectral density results are usually converted to o logarithmic form, ana
the bandwidth requirements are then determined by the resolution required at low
frequencies. However, in this cuse the frequency resolution becomes unnecessarily
high at middle and fow frequencies ot the expense of computation time. One solution
to this problem is to divide the total frequency range into a series of bands {on a
logarithmic basis) and compute results with a different resolution in each band. A
convenient method of doing this is to vary the sampling rate h within each band, but
because h determines the recognizable frequency content in the data it is necessary
to filter the data before reducing the sampling rate .

If the frequency bands are octaves then the appropricte filter is low-pass with a cut-
off frequency one half of the samplir, rate. The sampling rate is reduced by ccl-
culating only alternate filtered data points, which effectively discards one half of
the points in the series, resulting in a doubling of the time interval between data
points. This process has been called "data decimation" in Reference 1. If there are
n frequency bands the sampling rates are h, h/2, h/4, ..., h/2("’]), respectively,
starting with the highest band and descending. It will be noted that since m is
constan* ‘he bandwidth doubles in each ascending octave band. If it is desired to
keep the equivalent statistical degrees of freedom constant in each band then the
same number of data points ray must be used for the analysis in each band, which

implies that the total number of data points required is 271 forn frequency bands.

A Numerical Low Pass Filter

.. ideal low pass fil. .r hes the following characteristics:

G(f)

G(f) =0 f>f

1 f<f

c

(6.1)

16



where f_ is the cut-of‘ frequency in cycles second and G(f) is the frequency response

of the filter. In the time domain the fiiter output is the convolution of the inverse
Fourier transform of G(f) and the input signal . This is,

[es)

(1) = f g(t) X{t - 1) d (6.2)

- @

where g(t) is the inverse lou-ier transform of Gff) and X(t) is the time function which
is to be filtered to give X(t).

The Fourier transform of G(f) is

i f
sin 2n ft

o) = 3 —— (09

However, to obtain the properties of the ideal filter specified by the transform pair
defined by Equations (6.1) ond {6.3) the time function X(t) must be defined for all
time. In practice, of course, the time function for real dota is always truncated to

a finite ronge and this becomes equivalent to truncating the filter response in the time
domain. It is shown in Reference 6 that the resulting filter is far from ideal ond that
an improvement can be obtained by modifying the truncation process to give a sharper
cut-off and eliminate the oscillations in the frequency responce of the filter. The
modification is to multiply the filter response in the time domair given in Equation (5.3)
by a function similor to the dato window specified in Section 4, which forces g(f) to
approach zero smoothly before being truncated. In Reference 6 modifying functions of
this type are given the name apadizing functions because of an analogy with a process
in optics. From Reference 6, the most effective apodizing function is

2nf ¢t
1 c a
F(f) = 2 (] fef o 1 a ) Ifl s 2—r—c-
(6.4)
Q
F(t) =0 Il’l > 27
C

where a is a constant which controls the number of zero crossings of the product

g(t) F(t) for a given f.. The filter is given by the product g(t) F(t) and its frequency
respense for a = 3 is given in Figure 5 and for @ = 10 in Figure 6; the corresponding
responses in the time domain are shown in Figures 7 ond 8, respectively. The cuf-off
frequency f_ is taken to be 500 cycles/second.

For he case of discrete data, where X(t) is known at intervals of time At, Equation
(6.2) must be converted to discrete form, that is,

17



6.3

6.4

XG) = Y g0 X(G-K) A (6.9

k=-n

where g'(k) is defined for 2n ~ 1 discrete points and i -he filter function g(t) F(t) in
discrete form  Substituting for g'(k) gives

. [ cos2uf k Aty sin2nf_k At
X = 3 X (10 )
k

==-n

” (6.6)

where n=a /(2 fo At).

Cut-Off at One-Half the Frequency Range

For the particular case mentioned in Section 6.1, where the signal X(j) is filtered
to remove one half of its frequency content, f. = 1/(4 At). Substituting in
Equation (6.6):

2a
Xe(i =2'—“ > xG-w 1+ cos %)L(t“@ 6.7)

=-2a
The discrete filter weights in this case are

00 = 5 (14 eos k)
g'(k) T (]+c0520 sin

k
5 (6.8)
which are zero for even velues of k. except at k =0, and the non-zero terms alternate
in sign. In numerical calculations using the filter, advantage may be taken of the fact
that the filter is an even function and the number of multiplications can be reduced by
a factor of 2 by summing pairs of X(j) which have the same weights before multiplying.
Thus, for a =5 giving 21 value:z of g'(k), 10 of the weights are zero and there are 6
distinct non=zero weights which means that for each filtered point 6 multiplications and
11 additions are required.

Octave and One-Third Octave Analysis

The technique of carrying out power spectral density analysis in the manner described
in Section 6.1 has paiticular application in the case of octave and one-third octave
analysis, or for any other percentage frequency bandwidth analysis. Results are
obtained in a series of octave bands, with a constant frequency resolution in each
band, and converted to the required bandwidth by an averaging process, interpolating
between frequencies where required. Applying this technique, Figure 11 shows the
results of Figure 9 obtained using four frequency bands, and Figure 12 presents a third
octave form of the same results.

18



7.0

THE FAST FOURIER TRANSFORM

The "fast Fourier transform" is the name given to an algorithm which permits the rapid
evaluation of the discrete Fourier transform of a set of data, compared with the straight-
forward method of calculating the Fourier coefficients. The algorithm in its present
form was first published in Reference 4 and a minar variation has since been produced
(Reference 10); the historical background in the discovery of the algorithm is covered

in Reference 11. The basic idea of the algorithm will be summarized here, and an
attempt made to illustrate the methad for a particular case.

Define a function
m =2mi (.’I‘_)
¢ (N) =2 N 7.1)

which has the value 1 for all integral values of m/N and has the property e(a+b) =
e(a)e(). The discrete Fourier transform of X(j) is

N=1
] ) (kL
A - D X0 e () 7.2)
j=0
If N has p factors such that N:r'rz....rp then j and k may be expressed as
j:jp-l S AREE . +jp-2 SIPREEE et it (7.3)

K = kP"I AP IRTPRRLA +l<p_2 rprp_]....r3+ ceeot ko rp rp_' + kg rp+ ky (7.4)
where
jp-l' I<0 =0,1,2, ...., Fo-1 -
ip=y s k, =0,1,2, ...., o= -1

jol kp-l =0,],2, XY rl -1

19



rw-l

Substituting in 2 (k j/N) aond eliminating all integer terms in the argument gives

r, r r

. kp- koo, k k k__ k
e(b-)=esj pl+ pl+..~ +—0 +j —Pi+ p3+””+_0__
0 N ] 0 2 T3 5 -

and the discrete Fourier transform can be exp-essed as

ry=1 .
1 N Jop-1
A(ko'kl'kz"""kp-l)_ﬁ -Z e( 3
j,= 0

=0
rs—] K r.-1
j P ip-
p-2 0 ) P-1 0 -
X Z e(rp ]rp) Z X(Jo’JI’J2 ..... ’Jp-l) e( . ) (7 .6)
= - s P
.12 O Jp_]—o

It can be seen that the single dimension transform of size N has been converted to @
p dimensional transform of sizes ry, rp),...., p plus the multiplication of each

transform except the outer one by an e function which has been called o "twiddle
factor" by Gentleman and Sande (Reference 10). Cooley and Tukey in Reference 4
show that the ratio of the number of arithmetic operations, and hence computation
time, in the straightforward method to the FFT (fast Fourier Transform) is N/Iogr N

(when the p factors of N are ali equal to r). Experience with the algorithm, applied
to automatic digital computers, has shown these speed improvements to be attainable and
has brought hitherto impracticable uses of the discrete Fourier transform within the bounds
of practicability.

20



The variation introduced by Reference 10 is to rearrange the e terms in Eouations
(7.5) and (7.6) in the following manner:

O O
“\N/ - el ) ror (JO Jlrl) T ("0 h% Thh r7,
12 123
ko ( + 4 + i + + I (7 7)
+ ...t J 5, r Jo ¥, F Ja Ty T .r_) .
ety 0 1 20 p-1'12 Pl’
and Equation (7.6) is written
r]-] : k . k
' R Jo®p=1 Jo “p-
b - 1 2 (52 ()
=~ 1 2
Jo
r.-1 ) r-1
h ¥p=2 “p=3 3
5 () ) B
jo:O j2—0
-1
p ip-1ko
X 2 X lorbedz s+ ipe) e( - ) 7.8)
JP"I—O

Equation (7.8) has a slight advantage over (7.6) when being programmed for evalua-
tion on a digital computer.

The us~ of constant factors r =2, or r = 4, leads to the best compromise between cal-
culation speed and convenience, and the algorithm has been programmed extensively
in this form; in order to use the algorithm under these conditions N must be an
integral power of 2, but in many cases this is not a severe restriction. The imp!emen-
tation documented in Reference 5 for calculuring power spectral density from Equa-
tions (2.19) and (3.12) uses factors of r =4, plus, if Iog2 N is odd, one factor of 2.
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As an illustration to aid in the understanding of the workings of the algorithm consider
the case of N = 64, giving Foer = 4, in Equation {7.8). Llet the data X have
subscripts 0 to 63, and

27 "3

P = JptAd, 416, 7.9)
k:k0+4k'+]6k2 (7.10)
Equation (7.8) becomes
3
kN ik
_ ] Doy (2
Alkyr i +16k) = 5 D e(4 ) e( 16 )
=0
° jlkl o .
<2, e\ 7)) o Lo+ 43)
J]ZO
3 .
R
XZ x(10+4h+16]2, el (7.11)
iy =

All the subscripted indices take the values of 0, 1, 2, 3. In Equation (7.11) all the
e functions with a factor 4 in the denominator of the argument have real and
imaginary parts selectzd from 0 or +1, since they are exponentials with arguments

as multiples of m/2, and only additions and subtractions are involved when using
them. The complex matrix formed by the e function of the form «(j_ kp-s "/rs+|)

for all values of jS and kp-s-l is
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1,0 1,0 1,0 1,0]
| 1,0 0,1 -1,0 0,-1
[ZJ - (7.12)
1,0 1,0 1,0 -1,0
i - -
| 1.0 0,-1 1,0 0,1}

in which the real and imaginary parts are combined in the form a, b.

A further point in applying the FFT in a digital computer is that the transform of a set
of data may be calculated without the use of scratch storage if the original data are not
required after the transform has been obtained. The results of the transform may be
stored in place of the input data. The steps in evaluating the transform may be written
in terms of matrix operaiions provided the definrition of a non-standard matrix opera-
tion, which is given below, is accepted. In the following it is recognized that all
arithmetic is of complex form:

(i)

(ii)

for ko =0, 1, 2, 3 carry out the inner multiplication and summation over j2
for all values of j and j,, and store the four results ot each summation in

place of each datum involved in the summation. Thus, for jo =j, =0

(X0 X1 Xig %] = [%or X0 X0 %) [ 2] (7.13)

and Forjo =0,j, =1

[x;, X1, Xy x;z] - [x4, X,0r Xy x52] [z] (7.14)

andso on for all | ond | combinations. The array X' may now be zub-
jo ond i, y y

scripted by (j, + 4j, +16 k, )

the matrix of "twiddle factors" in the middle summation is indexed by
jI =0,1,2,3, for given jo and ko and con be represented as a 4x1

matrix [T(_jl)] The middle summation is thus, for Jo = ko =0.

[xg, Xy X2, x"'z] - [x;), X!, XL, x'u] 3[2] . [T(jl)]; (7.15)
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where the operation denoted by * means thai eack element of each column of

[Z:l is multiplied by the corresponding element of the column matrix [T]; for
jo:Ocnd kO:l.

[Xll;ﬂ X120+ X24s >‘zs] = [X' . X200 Xa4s Xée;l ([Zl * [T(J'])H (7.16)

and so on for all combinations of | and |<0 . The new array may now be sub-
scripted (jo + 4|(l + 16 ko).

(.Y the T matrix for the outer summation is indexed by I and the summation is

carried out for all values of ko ond kI . Thus, for k = k] =0

Do, g %] = [ X % %] H (1Gy) l (7.17)

and for |<0 =0, k1= 1

X %t % =[x X % %) g[] 16, H (7.18)

and so on for all combinations of k0 and k,.

The final values of A ~re subscripted (k; + 4k, + 15 k) which is not the required

final order, and the results musi be rearranged. It can be seen that if the subscript
is given a binary representation then the order in which A is obtained is equivaleni
to reversing the digits of the subscript in the requived order, and this fact mcy be of
use in th._ procedure for reordering the computed results.
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EXTENSIONS TO RELATED FUNCTIONS

Direct cnd cross-power spectral densities are used in the calculation of several useful
functions which express the properties of random processes or the response and excita~
tion of linear systems. These functicns inciude:

(i)

(iii)

coherznce tunction

Py

vk = e o (8.1)
FOENE

spatial co-relation function tor relating the random variation of a property at
two points in space x and y

3(k) = (8.2)
VPP

where ny(k) is the resl part of ny(k) .

frequency response function

F(k) = —2 (8.3)

where Py(k) is the output cpectral density of a system due to the input function
whose spectral density is P, and P_, (k) is the cross power spectral density

between them. The pkase angle ¢ of the frequency response function is equal
to the phase angle of the cross-power spectral density ny(k) .

autocorrelation function, which may be obtained by the inverse cosine trans-
form of the power spectral density, i.e.,

m/2 (2nkj)

RG) =h D P (K cos (8.4)
k=0

m

where, if P, (k) has been cbtained using a spectral window, R (j) is the

product of the autocorrelation function and the lag window corresponding to
the particular spectral window used.

25




(v)

cross correlation function, obtained by the inverse discrete Fourier trcnsform
of the cross power spectral density

ny(j) S * E() (8.3)
Rl = SG) - EG) (8.6)
where
m/2

Qnrri‘ki) 8.7)

SG) +TEQ) =h 3 Py (k) exp
k=0

The remarks concerning spectral and lag window apply here also.
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Fiqure 5. Filter Frequency Response: a = 5, fo = 500
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Figure 11. Power Spectral Density Obtained from Filtered and Decimated Data (Figure 9 Data)
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Figure 12. One-Third Octave Power Spectral Density (Figure 9 Data)
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